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FOREWORD
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George C. Marshall Space Flight Center, under Contract NAS8-21810. The work
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Dr. George H. Fichtl was the Technical Coordinator for this task. The
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Section |
INTRODUCTION

Future studies of the ascent control of the Space Shuttle are being
planned. Some of these planned studies will be carried out analytically using
a model simulation procedure. In this technique the Space Shuttle is followed
analytically as it ascends through the atmosphere. The model interacts with
the simulated random winds, and the ability of the ascent control to maintain

the desired trajectory is studied.

The simulated winds must be generated so as to have the appropriate
statistical behavior. This report discusses the method of generating a
random wind signal using a digital computer that will have the same statistics

as the winds encountered in the Space Shuttle ascent.

The procedure for generating the random wind is to develop a control
system which inputs discrete white Gaussian noise and outputs a random signal
that has the statistical behavior of the wind. The control system is written
in terms of state equations which are then digitized for computer calculations.
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Section 11
SIGNAL ANALYSIS

21 EMPIRICAL AUTOCORRELATION

An empirical wind autocorrelation was obtained from detailed Jimsphere
measurements (Reference 1) made at the Kennedy Space Center and shown on
Figure 2-1. The random components of the longitudinal winds, u and v, were
obtained as a function of altitude 2. The turbulent wind component was
normalized to yield

Vstz
y(t) = o(t)

where t = z/L(z). The term L(z) is a length scale which is chosen so that the
dimensionless y process is homogeneous; that is, the second order statistics of

y are independent of z. The o(z) is the standard deviation of v(z).

The resulting empirical autocorrelation is given by
Ry(t1s £3) = <y(t)) y(£))> = <y(t)) y(ey¥1)> = R (7)

where <*> represents an ensemble average and T is the lag. The same empirica!
autocorrelation was found to apply to both the u and the v components of the
horizontal wind when they were appropriately normalized (Reference 1).

The empirical autocorrelation can be represented in a functional form
which can be Fourier transformed to give the power spectrum for the dimension-
less wind. Bv factoring the power spectrum, a control system function can
be cbtained. A control system is then defined which inputs white noise and
outputs a random signal which has the same autocorrelation as the functional
autocorrelation just discussed. The control system can then be written in
terms of state equations which are put in a discrete form for use on a digital
computer. The autocorrelation of tha digitized output signal is in good
agreement with the desired autocorrelation.

2-1
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22 FITTING EMPIRICAL AUTOCORRELATION
An empirical autocorrelation was obtained from wind data (Reference 1)

and is plotted on Figure 2-1. The empirical autocorrelation was approximated
in functional form by

Ry(r) = <y(t) ylc + 1)
= exp (-D|t|) { cos B(t) - % sin B|1|} (2-2a)

where the notation <+> refers to ensemble averages and B and D are empirically
determined coefficients.

B=1.122 7 (2-20)
D = 0.539

and T is the autocorrelation lag. A comparison of the empirical and functional
form of the autocorrelation in Figure 2~1 shows good agreement between the two.

By taking the Fourier transform of the autocorrelation the power spectvum

Qy is obtained; and, since Ry is an even function, the power spectrum can be
written as

aDu?
[0? + a-w?] [o? + @ + w)?]

’y -2 Io R,(r) cos wrdt = (2=3)

23 SYSTEM FUNCTION
In general, the output power spectrum of a system can be written as
* -
’y e HH 01 (2=4)

vhere 01 is the input power spectrum and H is the system function. The H* is
the complex conjugate of the system function.
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If the input is vhite Gaussian noise, then ‘I = 1.0; and °y equals HH*
vhere H is given by

~(2JdD; S _
e G5 5=10) GFDF1D) (2-5)

Where S = iw. This result is shown by Figure 2-2. The system equation can
now be written as

Y(8) = H(S) I(S)

vhere Y(S) is the dimensionless wind having the sutocorrelation given by
Equation 2-2 and I(S) is the Gaussian white noise input (Figure 2-3).
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Figure 2-3. CONTROL SYSTEM

24 STATE SPACE SYSTEM
As shown in Reference 2, we can, define the system in terms of state

variable x1 givcﬁ by the following equation where the Einstein summation

convention is implied by repeated indices:

i

The system output is given by

Y= o !1 (2-8)

Following Dorf (Reference 2) the flow graph state model is produced as shown
on Pigure 2-4, where

bl-zli'; ll-zn‘udlo'bz+'z (2-9)

2-5
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Figure 2-4. FLOW GRAPH STATE MODEL

Then, the matrices can be written as

e -

[ -
[d -

0 1
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e
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(2-10)

(2-11)

(2-12)
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Section 111
DISCRETE TIME SYSTEM

31 DISCRETE STATE SPACE SYSTEM

For use on digital computers the l'tate equations must be converted to a
discrete time systenm.

One procedure for achieving this is given in Refarence
3.

In this procedure the input signal I is passed through a zero order
holding device which samples the signal at unit intervals of time and holds

the signal value constant between samples (Figure 3-1). The procedure for

converting to a discrete time system is discussed next.

F——————

a .
_L/ HOLDING '

i DEVICE H
|_SAMPLER

Figure 3-1. CONTROL SYSTEM WITH SAMPLER AND HOLDING DEVICE

Equation 2-7 can bs integrated as shown in Reference 4 to give

t
Xi(t) - 0“ (t - to) XJ (to) + Jt o“ t - 1) d.,l(r) dr (3-1)
()

vhere ’u is known as the fundamental matrix. Since I is considered constant

over the interval T, Equation 3=1 can be evaluated at time t = (K + 1)T
over the increment T and obtain

X‘(l +1) = 0“ (1) LY (X) + A1 (T) 1(K) (3-2)

3-1
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wvhere

T
Ai('l‘) - Jo é:lJ (t) dJ dt (3-3)

s Following the usual procedures, the fundamental matrix can be eva’uated using
Laplace transforms where L represents the Laplace transform operation.

§ L [‘u"ﬂ - [“u - ‘u]-l (3-4)

§ vhere
! s 01f i 94
i 1J

11if 1 =]
This can be solved to give

) [coc BT + -2- sin rr] ¢ 7T g1n 37
(3-5)
[‘m“ﬂ -

¢ otn BT e |cos BT - % sin l‘!‘l

[ [

ul o®

L
Taking the limit for small T

1 T %
[0“(1‘):! - e T 1-207 i [Au] § 0<T«<<] (3-6) ;
o

. Then, from Bquation 3-3, obtain

[*; (‘ra ~ ]: [1_;: [] [] o<Te<] (3-7) |

This then gives the result for the discrete casc as

1 (K+1) e Ay XJ(K) + Dtl(l) (3-8)

Where A“ and nt are defined by Equations 3~6 and 3-7.

/
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This same relationship can be obtained by using a forward finite
differencing technique (Reference 2). In this method Equation 2-7 can be

written as

X, (K+1) - X (K)
i 1 -a . X
T WA |

(K) +d, 1(K) (3-9)
This expression can be rewritten to give the same result as Equation 3-8.

Xi (K+1) = (TaiJ + 61J) XJ(K) + Tdi I(K)

(3-10)

= AiJ XJ(K) + Di I(K)

3.2 EFFECT OF DIGITIZING ON AUTOCORRELATION )
As shown on Figure 3-1, a zero order holding device has been added

{Reference 4). - Therefore, the input into the continuous system will be put E
in a discrete form consisting of a stair iunction of Gaussian heights and of :
width T (Figure 3-1). As discussed in ta2ference 5 a correction must be made

for this effect. This can be done by finding the spectrum of the discrete

input. The autocorrelation of the discrete input is given by

Ry (v) = <I'(t) I'(t + 1)>
= o2 Pr[A] (3-11)

The 02 is the variance of the Gaussian noise input, and Pr[A] is the probability

that points t and t + Tt of the input in the discrete form both occur between the
times KT and (K + 1)T. Since the Gaussian noise input has a variance of 1.0
then 32 = 1. The probability of A occurring (Reference 6) can be seen to be
T - lrl
Pr(A) = T ltler (3-12)
0 y t]>T

Then the input autocorrelation is given by
Izl
j T ’ l‘rl:T , (3-13)

Ri(t) =
I 0o, ltpr

L - G e e e e+ e - R s & o .

T .
L . s
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This can be Fourier transformed to give the input power spectrum

' sin (wT/2) 2 .
S S -1
2

0<T<<1 (3-14)

This same result was found in Reference 5.
Thus, the output spectrum of the discrete input, y', is now given by

0y' = THH* ‘I =T ‘y (3-15)

Therefore, the digitized autocorrelation is

Ry.(r) - TRy(t) (3-16)

Thus, the output signal must be normalized to obtain the correct autocorrelation

Ve . gl/2
by E&y.(cﬂ oy, T

¥4

R

. s
BT S W



Section |V
THEORETICAL DISCRETE AUTOCORRELATIONS

The theoretical autocorrelation can be calculated for the discrete

equation following the procedure in Reference 5 by writing Equation 3-8 as

Xi(K +1) = AiJ XJ(K) + DjI(K)

Xi(K +2) = A

17 xJ(x + 1) + Dil(x + 1)

(2)
= A X (K) + Aig Dy I(K) + D, I(K + 1)

where
2),
A™ Ay A
Similarly
- a(3) (2)
xi (K + 3) AiK XK(K) + AiK DKI(K) + AiK DKI(K + 1)
+ DiI(K + 2)
and, in gehernl,
K+a~-1
o a(0) (K+n=1-r)
X, (K+n) = A 'K (K) + oA D, I(r)
r=K
vhere
(o) .
AyDy = Dy

Letting K+ n = L, and, as K+-=, X‘(-O) =0

then lil (i=1-1)
X, (L) = A D .I{r)
i rocw 1J J
4=1

A O a4 3 s

(4-1)

(4-2)

(4-1)

(4-4)

(4=5)

(4-6)
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This gives a nonrecursive form for obtaining xi (2). If m = 2-1-r then the

equation becomes

(m)
X () = ] A D, I(f-m-1) (4-7)
m=0

Since <I> = O then <X1> =0

The autocorrelation can be found as follows:
using Equation 4-7

<I(R) X, (2412)> = RIX (1) = mzo 1§“) D;<I(L) IR + X - m =~ 1)> (4-8)

i

Since I is Gaussian white noise
0 when A-m-1 # 0
<I(L)I(L+A-m~1)> = §(A-m-1) ; where 6 = (4-9)
‘ 1 when A-m-1 = 0
So that Equation 4-8 becomes

(A 1)D for A¥0
' 1J J
() = (4-10)
RIxi 0 for A=Q
Similarly,
' - - (ﬂ) - s -
nxixx(x) <X (1) X (£42)> { A Dy<I(t-mel) X, (842) (4-11)
- (n)
Z A RIXK(A-m-O-l)
or
Rx ) ] Z A, g a0 p )_‘o £(m) £(m+) (4-12)
1

The result can be seen to be a convolution summation which is the discrete
time counterpart to the convolution integral.
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For the autocorrelation of the system output y
2

2 bS R )
<X, (@) X, (2+2)> "1 "X X
Ry(k) <y (L) y(l-ﬂ) , 2 - 222 (4-13)
! o! a!
y y y

Then, by combining Equations 4-12 and 4-10, obtain

b2 Tz"f 1\()A(nm) Z A(m) <m)

1 o= 22 722
R(A) = (4=13)
y 2
oy I (A(“) 2
where the normalizing factor is given by
0'2- <y2(£)>-b (o) - 2 2 X (A(m) 2 (4-15)
y 1 2x2 1

The analytical result for the discrete autocorrelation Ry(l) is shown in
Figure 2-1 for T = 0.125 and T = 0.1 and is in good agreement with the desired
autocorrelation. The values found for 0'2 were 0.145 for T of 0.125.

For T = 0.1, 0;2 = 0,111. This indicates that the system is stable since

the variance is rfinite. The correction factor found earlier in Equation 3-16

was 0;2 = T, which in the present case gives close Qgreemenc with the more
detailed discrete results.

g gt s vt v ————y e
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Section V
STABILITY ANALYSIS

\

In Referenc: 4 it is shown that a stationary linear system subjected to
a bounded input is stable if and only if all the zeros of the characteristic
polynomial, AT - A13| be within the circle |A| = 1 in the complea A plain.
This results in

qu - Aul =0 | (5-1)
vhere |*| denotes a determinant. The eq. 5-1 can be expanded to

24-:\(21)'1'-2)-|-1-z:rr+.°'r2-o (5-2)

A
This can be solved to give

A= (1-DT) + iTB (5-3)

which has the magnitude
|A] = [1 - 20T + T2(D% + nz):lu2 (5-4)

Since (l)2 + 32)'1‘ < =2D for small T then |A| <1 ; and therefore, the system
is stable.

=1




Section VI
COMPUTER SIGNAL OUTPUT

Discrete Gaussian white noise can be generated on the computer using
readily available programs. Inputting this into the recursive equation for
x1 (Equation 3-8) can result in a set of discrete values of y(K); K = 1,2,3..,
This result can be normalized either by a; (Equation 4-14) or by Sy given by

. W 1/2
1 2
s,= |5 I vy (6-1)

The resulting autocorrelation was calculated from

1 W
5 L YK y(k)
k=1

y

For a time increment of T = 0.125 and 1,000 samples the result in Figure 2-1
was obtained. This result is in good agreement with the desired autocorrelation.
The value obtained for s: for T = 0.125 was 0.142 which is in good agreement

with the result obtained theoretically which is given in Section IV as 0.145.
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Section VI
CONCLUSIONS

A technique is developed for the simulation of random wind signals having

sn appropriate autocorrelation which can be readily generated on a digital

computer. These results are to be used in generating wind data tapes for

Space Shuttle launch simulations. These results can be linearly interpolated

to give intermediate values between the generated results.
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